资源类型

期刊论文 998

年份

2024 2

2023 55

2022 81

2021 65

2020 59

2019 69

2018 43

2017 58

2016 38

2015 47

2014 46

2013 42

2012 36

2011 39

2010 53

2009 51

2008 44

2007 47

2006 29

2005 17

展开 ︾

关键词

设计 19

三峡工程 11

优化设计 9

增材制造 8

多目标优化 7

机器学习 5

材料设计 5

创新设计 4

施工 4

3D打印 3

协同设计 3

DSM(设计结构矩阵) 2

D区 2

TRIZ 2

三塔悬索桥 2

仿真 2

创新 2

南京长江第四大桥 2

可靠性 2

展开 ︾

检索范围:

排序: 展示方式:

Structure improvement and strength finite element analysis of VHP welded rotor of 700°C USC steam turbine

Jinyuan SHI,Zhicheng DENG,Yong WANG,Yu YANG

《能源前沿(英文)》 2016年 第10卷 第1期   页码 88-104 doi: 10.1007/s11708-015-0387-1

摘要: The optimized structure strength design and finite element analysis method for very high pressure (VHP) rotors of the 700°C ultra-super-critical (USC) steam turbine are presented. The main parameters of steam and the steam thermal parameters of blade stages of VHP welded rotors as well as the start and shutdown curves of the steam turbine are determined. The structure design feature, the mechanical models and the typical position of stress analysis of the VHP welded rotors are introduced. The steady and transient finite element analysis are implemented for steady condition, start and shutdown process, including steady rated condition, 110% rated speed, 120% rated speed, cold start, warm start, hot start, very hot start, sliding-pressure shutdown, normal shutdown and emergency shutdown, to obtain the temperature and stress distribution as well as the stress ratio of the welded rotor. The strength design criteria and strength analysis results of the welded rotor are given. The results show that the strength design of improved structure of the VHP welded rotor of the 700°C USC steam turbine is safe at the steady condition and during the transient start or shutdown process.

关键词: 700°C ultra-super-critical unit     steam turbine     very high pressure rotor     structure strength design     strength design criteria     finite element analysis    

Concepts and implementation of strain-based criteria in design codes for steel structures

Reidar BJORHOVDE

《结构与土木工程前沿(英文)》 2012年 第6卷 第3期   页码 210-216 doi: 10.1007/s11709-012-0165-7

摘要: A uniaxial tension test is commonly used to determine the mechanical properties of steel, but it has no meaning for the response of the material in a structure. The test was developed as a consensus solution by producers, fabricators, designers and code writers, to have a standard by which similar materials could be compared to a common base. It does not represent the actual behavior of the steel in a structure, and was never intended to do so. To study the true behavior of the structure and how the material responds it would be better to determine the strains and deformations that will take place during actual service condition. Such characteristics reflect the real behavior, whether in the elastic or inelastic range. If stresses or forces are needed, these are easily determined by the value of the strain and the relevant material modulus, along with the type of cross section, whether elastic or inelastic. The paper addresses the properties of a range of structural steels, how these are incorporated into design standards and how the standards define deformation characteristics and demands for bolted and welded connections.

关键词: steel     stress-strain characteristics     tension test     strain design     actual behavior     improved design codes    

海堤设防标准探讨

卢永金,,何友声,刘桦

《中国工程科学》 2005年 第7卷 第12期   页码 17-23

摘要:

调查分析了国内外海堤设防标准,把海堤破坏归结为6种模式,并分析风浪与潮位(流)对各种模式的影响,提出风浪与高潮遭遇概率粗略算法;根据海堤结构特点及其破坏模式,提出一种基于风浪与高潮遭遇概率,综合反映结构功能、使用要求与潜在风险,三层次设防的海堤设计标准,在此基础上提供了一种基于风险理论的海堤优化设计方法。

关键词: 海堤     设计标准     风浪     高潮     遭遇概率     破坏模式     风险     优化设计    

Out-of-plane elastic buckling load and strength design of space truss arch with a rectangular section

Senping WANG; Xiaolong LIU; Bo YUAN; Minjie SHI; Yanhui WEI

《结构与土木工程前沿(英文)》 2022年 第16卷 第9期   页码 1141-1152 doi: 10.1007/s11709-022-0866-5

摘要: The out-of-plane stability of the two-hinged space truss circular arch with a rectangular section is theoretically and numerically investigated in this paper. Firstly, the flexural stiffness and torsional stiffness of space truss arches are deduced. The calculation formula of out-of-plane elastic buckling loads of the space truss arch is derived based on the classical solution of out-of-plane flexural-torsional buckling loads of the solid web arch. However, since the classical solution cannot be used for the calculation of the arch with a small rise-span ratio, the formula for out-of-plane elastic buckling loads of space truss arches subjected to end bending moments is modified. Numerical research of the out-of-plane stability of space truss arches under different load cases shows that the theoretical formula proposed in this paper has good accuracy. Secondly, the design formulas to predict the out-of-plane elastoplastic stability strength of space truss arches subjected to the end bending moment and radial uniform load are presented through introducing a normalized slenderness ratio. By assuming that all components of space truss circular arches bear only axial force, the design formulas to prevent the local buckling of chord and transverse tubes are deduced. Finally, the bearing capacity design equations of space truss arches are proposed under vertical uniform load.

关键词: torsional stiffness     strength design     elastic buckling     space truss arches     out-of-plane    

Displacement-based seismic design of high-strength concrete frame columns

ZHANG Guojun, LIU Jianxin, LU Xilin

《结构与土木工程前沿(英文)》 2008年 第2卷 第1期   页码 93-101 doi: 10.1007/s11709-008-0006-x

摘要: Based on the testing results of 108 high-strength concrete columns under constant axial loading and horizontal cyclic loading, the relations between the drift ratio at yield, the maximum displacement drift, the limiting displacement drift, the ductility ratio of testing columns and shear span-to-depth ratio, axial compression ratio, confining reinforcement characteristic values, the ratio of cover area to confined core area as well as longitudinal reinforcement ratio are discussed in this paper. Then the relations between limiting displacement drifts and axial compression ratio, confining reinforcement characteristic values and the ratio of cover area to confined core area are analytically regressed. Subsequently the relations between confining reinforcement characteristic values and axial compression ratio, the limiting displacement drift, and the practical formula used to calculate confining reinforcement characteristic values are put forward. In the end the minimum confining reinforcement characteristic values in the dense hoop regions of high-strength concrete columns are presented by comparatively analysis, and compared with ones in the design code (GB 50010-2002, P. R. China).

关键词: horizontal cyclic     longitudinal reinforcement     design     loading     constant    

An improved design method to predict the E-modulus and strength of FRP composites at different temperatures

Mohammed FARUQI, Gobishanker RAJASKANTHAN, Breanna BAILEY, Francisco AGUINIGA

《结构与土木工程前沿(英文)》 2022年 第16卷 第12期   页码 1654-1654 doi: 10.1007/s11709-020-0622-7

Shear design of high strength concrete prestressed girders

Emad L. LABIB,Hemant B. DHONDE,Thomas T. C. HSU,Y. L. MO

《结构与土木工程前沿(英文)》 2014年 第8卷 第4期   页码 373-387 doi: 10.1007/s11709-014-0087-7

摘要: Normal strength prestressed concrete I-girders are commonly used as the primary superstructure components in highway bridges. However, shear design guidelines for high strength PC girders are not available in the current structural codes. Recently, ten 7.62 m (25 feet) long girders made with high strength concrete were designed, cast, and tested at the University of Houston (UH) to study the ultimate shear strength and the shear concrete contribution ( ) as a function of concrete strength ( ). A simple semi-empirical set of equations was developed based on the test results to predict the ultimate shear strength of prestressed concrete I-girders. The UH-developed set of equations is a function of concrete strength ( ), web area ( ), shear span to effective depth ratio ( / ), and percentage of transverse steel ( ). The proposed UH-Method was found to accurately predict the ultimate shear strength of PC girders with concrete strength up to 117 MPa (17000 psi) ensuring satisfactory ductility. The UH-Method was found to be not as overly conservative as the ACI-318 (2011) code provisions, and also not to overestimate the ultimate shear strength of high strength PC girders as the AASHTO LRFD (2010) code provisions. Moreover, the proposed UH-Method was found fairly accurate and not exceedingly conservative in predicting the concrete contribution to shear for concrete strength up to 117 MPa (17000 psi).

关键词: shear design     high strength concrete     prestressed girders     full-scale tests    

Empirical models and design codes in prediction of modulus of elasticity of concrete

Behnam VAKHSHOURI, Shami NEJADI

《结构与土木工程前沿(英文)》 2019年 第13卷 第1期   页码 38-48 doi: 10.1007/s11709-018-0479-1

摘要: Modulus of Elasticity (MOE) is a key parameter in reinforced concrete design. It represents the stress-strain relationship in the elastic range and is used in the prediction of concrete structures. Out of range estimation of MOE in the existing codes of practice strongly affect the design and performance of the concrete structures. This study includes: (a) evaluation and comparison of the existing analytical models to estimating the MOE in normal strength concrete, and (b) proposing and verifying a new model. In addition, a wide range of experimental databases and empirical models to estimate the MOE from compressive strength and density of concrete are evaluated to verification of the proposed model. The results show underestimation of MOE of conventional concrete in majority of the existing models. Also, considering the consistency between density and mechanical properties of concrete, the predicted MOE in the models including density effect, are more compatible with the experimental results.

关键词: modulus of elasticity     normal strength normal weight concrete     empirical models     design codes     compressive strength     density    

Compressive strength prediction and optimization design of sustainable concrete based on squirrel search

《结构与土木工程前沿(英文)》   页码 1310-1325 doi: 10.1007/s11709-023-0997-3

摘要: Concrete is the most commonly used construction material. However, its production leads to high carbon dioxide (CO2) emissions and energy consumption. Therefore, developing waste-substitutable concrete components is necessary. Improving the sustainability and greenness of concrete is the focus of this research. In this regard, 899 data points were collected from existing studies where cement, slag, fly ash, superplasticizer, coarse aggregate, and fine aggregate were considered potential influential factors. The complex relationship between influential factors and concrete compressive strength makes the prediction and estimation of compressive strength difficult. Instead of the traditional compressive strength test, this study combines five novel metaheuristic algorithms with extreme gradient boosting (XGB) to predict the compressive strength of green concrete based on fly ash and blast furnace slag. The intelligent prediction models were assessed using the root mean square error (RMSE), coefficient of determination (R2), mean absolute error (MAE), and variance accounted for (VAF). The results indicated that the squirrel search algorithm-extreme gradient boosting (SSA-XGB) yielded the best overall prediction performance with R2 values of 0.9930 and 0.9576, VAF values of 99.30 and 95.79, MAE values of 0.52 and 2.50, RMSE of 1.34 and 3.31 for the training and testing sets, respectively. The remaining five prediction methods yield promising results. Therefore, the developed hybrid XGB model can be introduced as an accurate and fast technique for the performance prediction of green concrete. Finally, the developed SSA-XGB considered the effects of all the input factors on the compressive strength. The ability of the model to predict the performance of concrete with unknown proportions can play a significant role in accelerating the development and application of sustainable concrete and furthering a sustainable economy.

关键词: sustainable concrete     fly ash     slay     extreme gradient boosting technique     squirrel search algorithm     parametric analysis    

Shear-flexural strength mechanical model for the design and assessment of reinforced concrete beams subjected

Antonio MARÍ,Antoni CLADERA,Jesús BAIRÁN,Eva OLLER,Carlos RIBAS

《结构与土木工程前沿(英文)》 2014年 第8卷 第4期   页码 337-353 doi: 10.1007/s11709-014-0081-0

摘要: A mechanical model recently developed for the shear strength of slender reinforced concrete beams with and without shear reinforcement is presented and extended to elements with uniformly distributed loads, specially focusing on practical design and assessment in this paper. The shear strength is considered to be the sum of the shear transferred by the concrete compression chord, along the crack, due to residual tensile and frictional stresses, by the stirrups and, if they exist, by the longitudinal reinforcement. Based on the principles of structural mechanics simple expressions have been derived separately for each shear transfer action and for their interaction at ultimate limit state. The predictions of the model have been compared to those obtained by using the EC2, MC2010 and ACI 318-08 provisions and they fit very well the available experimental results from the recently published ACI-DAfStb databases of shear tests on slender reinforced concrete beams with and without stirrups. Finally, a detailed application example has been presented, obtaining each contributing component to the shear strength and the assumed shape and position of the critical crack.

关键词: shear strength     mechanical model     reinforced concrete     design     assessment     shear tests    

An improved design method to predict the E-modulus and strength of FRP composites at different temperatures

Mohammed FARUQI, Gobishanker RAJASKANTHAN, Breanna BAILEY, Francisco AGUINIGA

《结构与土木工程前沿(英文)》 2022年 第16卷 第12期   页码 1653-1653 doi: 10.1007/s11709-019-0578-7

摘要: In recent years, there has been an increased interest in the use of fiber reinforced polymer (FRP) in the construction industry. However, the E-modulus and strength of such members at high service temperatures is still unknown. Modulus and strength of FRP at high service temperatures are highly required parameters for full design. The knowledge and application of this could lead to a cost effective and practical consideration in fire safety design. Thus, this paper proposes design methods for calculating the E-modulus and strength of FRP members at different temperatures. Experimental data from literature were normalized and compared with the results predicted by this method. It was found that the proposed design methods conservatively estimate the E-modulus and strength of FRP structural members. In addition, comparison was also made with direct references to the real behavior of materials. It was found to be satisfactory. Finally, an application is provided.

关键词: concrete     fiber reinforced polymer     E-modulus     strength     temperatures    

Finite element analysis of stress concentrations and failure criteria in composite plates with circular

null

《机械工程前沿(英文)》 2014年 第9卷 第3期   页码 281-294 doi: 10.1007/s11465-014-0307-9

摘要:

In this study, the stress concentration factors (SCF) in cross-and-angle-ply laminated composite plates as well as in isotropic plates with single circular holes subjected to uniaxial loading is studied. A quadrilateral finite element of four-node with 32 degrees of freedom at each node, previously developed for the bending and mechanical buckling of laminated composite plates, is used to evaluate the stress distribution in laminated composite plates with central circular holes. Based up on the classical plate theory, the present finite element is a combination of a linear isoparametric membrane element and a high precision rectangular Hermitian element. The numerical results obtained by the present element compare favorably with those obtained by the analytic approaches published in literature. It is observed that the obtained results are very close to the reference results, which demonstrates the accuracy of the present element. Additionally, to determine the first ply failure (FPF) of laminated plate, several failure criterions are employed. Finally, to show the effect of ratio on the failure of plates, a number of figures are given for different fiber orientation angles.

关键词: laminated composite plates     stress concentration     geometric singularity     anisotropic effect    

Probability strength design of steam turbine blade and sensitivity analysis with respect to random parameters

DUAN Wei

《能源前沿(英文)》 2008年 第2卷 第1期   页码 107-115 doi: 10.1007/s11708-008-0018-1

摘要: Many stochastic parameters have an effect on the reliability of a steam turbine blade during practical operation. To improve the reliability of blade design, it is necessary to take these stochastic parameters into account. An equal cross-section blade is investigated and a finite element model is built parametrically. Geometrical parameters, material parameters and load parameters of the blade are considered as input random variables while the maximum deflection and maximum equivalent stress are output random variables. Analysis file of the blade is compiled by deterministic finite element method and applied to be loop file to create sample points. A quadratic polynomial with cross terms is chosen to regress these samples by step-forward regression method and employed as a surrogate of numerical solver to drastically reduce the number of solvers call. Then, Monte Carlo method is used to obtain the statistical characteristics and cumulative distribution function of the maximum deflection and maximum equivalent stress of the blade. Probability sensitivity analysis, which combines the slope of the gradient and the width of the scatter range of the random input variables, is applied to evaluate how much the output parameters are influenced by the random input parameters. The scatter plots of structural responses with respect to the random input variables are illustrated to analyze how to change the input random variables to improve the reliability of the blade. The results show that combination of the finite element method, the response surface method and Monte Carlo method is an ideal way for the reliability analysis and probability strength design of the blade.

关键词: Probability sensitivity     sensitivity analysis     number     cross-section     statistical    

Trapezoidal Intuitionistic Fuzzy Aggregation Operator Based on Choquet Integral and Its Application to Multi-Criteria

Xi-hua Li,Xiao-hong Chen

《工程管理前沿(英文)》 2015年 第2卷 第3期   页码 266-276 doi: 10.15302/J-FEM-2015048

摘要: The Choquet integral can serve as a useful tool to aggregate interacting criteria in an uncertain environment. In this paper, a trapezoidal intuitionistic fuzzy aggregation operator based on the Choquet integral is proposed for multi-criteria decision-making problems. The decision information takes the form of trapezoidal intuitionistic fuzzy numbers and both the importance and the interaction information among decision-making criteria are considered. On the basis of the introduction of trapezoidal intuitionistic fuzzy numbers, its operational laws and expected value are defined. A trapezoidal intuitionistic fuzzy aggregation operator based on the Choquet integral is then defined and some of its properties are investigated. A new multi-criteria decision-making method based on a trapezoidal intuitionistic fuzzy Choquet integral operator is proposed. Finally, an illustrative example is used to show the feasibility and availability of the proposed method.

关键词: multi-criteria decision making     trapezoidal intuitionistic fuzzy numbers     Choquet integral     fuzzy measure     aggregation operator    

State-of-the-art on resistance of bearing-type bolted connections in high strength steel

Guoqiang LI, Yifan LYU, Yanbo WANG

《结构与土木工程前沿(英文)》 2020年 第14卷 第3期   页码 569-585 doi: 10.1007/s11709-020-0607-6

摘要: With the recent development of material science, high strength steel (HSS) has become a practical solution for landmark buildings and major projects. The current codes for design of bearing-type bolted connections of steel constructions were established based on the research of conventional steels. Since the mechanical properties of HSS are different from those of conventional steels, more works should be done to develop the appropriate approach for the design of bearing-type bolted connections in HSS. A review of the research carried out on bearing-type bolted connections fabricated from conventional steel and HSS is presented. The up-to-date tests conducted at Tongji University on four connection types fabricated from three grades of HSS with nominal yield strengths of 550, 690, and 890 MPa are presented. The previous research on failure modes, bearing resistance and the design with consideration of bolt hole elongation are summarized. It is found that the behavior of bolted connections in HSS have no drastic difference compared to that of conventional steel connections. Although the ductility is reduced, plastic deformation capacity of HSS is sufficient to ensure the load redistribution between different bolts with normal construction tolerances. It is also found that behavior of each bolt of multi-bolt connections arranged in perpendicular to load direction is almost identical to that of a single-bolt connection with the same end distance. For connections with bolts arranged in parallel to load direction, the deformation capacity of the whole connection depends on the minimum value between the end distance and the spacing distances in load direction. The comparison with existing design codes shows that Eurocode3 and Chinese GB50017-2017 are conservative for the design of bolted connections in HSS while AISC 360-16 may overestimate the bearing resistance of bolted connections.

关键词: High strength steel     bolted connection     bearing behavior     design codes    

标题 作者 时间 类型 操作

Structure improvement and strength finite element analysis of VHP welded rotor of 700°C USC steam turbine

Jinyuan SHI,Zhicheng DENG,Yong WANG,Yu YANG

期刊论文

Concepts and implementation of strain-based criteria in design codes for steel structures

Reidar BJORHOVDE

期刊论文

海堤设防标准探讨

卢永金,,何友声,刘桦

期刊论文

Out-of-plane elastic buckling load and strength design of space truss arch with a rectangular section

Senping WANG; Xiaolong LIU; Bo YUAN; Minjie SHI; Yanhui WEI

期刊论文

Displacement-based seismic design of high-strength concrete frame columns

ZHANG Guojun, LIU Jianxin, LU Xilin

期刊论文

An improved design method to predict the E-modulus and strength of FRP composites at different temperatures

Mohammed FARUQI, Gobishanker RAJASKANTHAN, Breanna BAILEY, Francisco AGUINIGA

期刊论文

Shear design of high strength concrete prestressed girders

Emad L. LABIB,Hemant B. DHONDE,Thomas T. C. HSU,Y. L. MO

期刊论文

Empirical models and design codes in prediction of modulus of elasticity of concrete

Behnam VAKHSHOURI, Shami NEJADI

期刊论文

Compressive strength prediction and optimization design of sustainable concrete based on squirrel search

期刊论文

Shear-flexural strength mechanical model for the design and assessment of reinforced concrete beams subjected

Antonio MARÍ,Antoni CLADERA,Jesús BAIRÁN,Eva OLLER,Carlos RIBAS

期刊论文

An improved design method to predict the E-modulus and strength of FRP composites at different temperatures

Mohammed FARUQI, Gobishanker RAJASKANTHAN, Breanna BAILEY, Francisco AGUINIGA

期刊论文

Finite element analysis of stress concentrations and failure criteria in composite plates with circular

null

期刊论文

Probability strength design of steam turbine blade and sensitivity analysis with respect to random parameters

DUAN Wei

期刊论文

Trapezoidal Intuitionistic Fuzzy Aggregation Operator Based on Choquet Integral and Its Application to Multi-Criteria

Xi-hua Li,Xiao-hong Chen

期刊论文

State-of-the-art on resistance of bearing-type bolted connections in high strength steel

Guoqiang LI, Yifan LYU, Yanbo WANG

期刊论文